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Abstract. In this paper, we introduce a new approach for mining regulatory in-
teractions between genes in microarray time series studies. A number of prepro-
cessing steps transform the original continuous measurements into a discrete rep-
resentation that captures salient regulatory events in the time series. The discrete
representation is used to discover interactions between the genes. In particular,
we introduce a new across-model sampling scheme for performing Markov Chain
Monte Carlo sampling of probabilistic network classifiers. The results obtained
from the microarray data are promising. Our approach can detect interactions
caused both by co-regulation and by control-regulation.

1 Introduction

In bioinformatics, we are faced with an increasing amount of data that characterize the
structure and function of different living organisms. Still more experimental data such
as sequences (nucleotides, proteins) and gene activities (mRNA expression ratios) are
generated either in the biology laboratory or in a clinical setting. The ever-expanding
datasets fuel a growing demand for new datamining techniques that can help to discover
possible relations between the biological entities under study and couple the different
sources of data. Such datamining techniques should be able to cope with many vari-
ables that may exhibit complex dependency relations. We present a new cross-model
sampling Markov Chain Monte Carlo algorithm, which we test by learning Bayesian
network classifiers to predict regulatory relations between a set of predictor genes and
a target gene.

Microarrays were introduced in the nineties as a means for studying in parallel the
expression of all genes pertaining to a particular organism. One of the ultimate goals is
to discover which genes are involved in the regulation of others, the so-called regulatory
pathways. Microarrays measure the relative abundance of mRNA, corresponding to
each known gene transcribed at a certain time t in a particular organism under study.
So the prospect of microarrays is that of an aid that can help to identify functional roles
of genes and eventually enrich the knowledge of the complex relations between the
genotype and the phenotype of the organism under study.

Microarray time series experiments are conducted in order to study significant dy-
namic expression patterns. One goal of a time series experiment is to investigate which
genes regulate others. It is to be expected that some genes that are controlled by the
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same transcription factor show a similar but lagged expression pattern over time, when
the expression of the particular transcription factor varies. We make a distinction be-
tween co-regulation and controlled regulation. Two genes are said to be positively co-
regulated when the change in relative abundance of the genes has the same first- order
derivatives with respect to time. Two genes are said to be inversely co- regulated when
the change in relative abundance of the genes has the opposite first-order derivatives
with respect to time. Two perfectly co-regulated genes can have expression patterns
with different amplitudes. One or more genes (the regulators) are said to control the
expression of a particular gene (the target) when the expressions of the regulator genes
directly influence the expression of the target gene.

Under conditions where particular genes are co-regulated or one or more regulator
genes control the expression of a target gene, one would expect co-variation between
the expressions of these genes over time. Our goal is to develop a datamining approach
that can discover dynamic patterns of co-regulation and control regulation between sets
of genes. Clustering techniques and correlation measures have been used extensively
to identify groups of genes that are likely to be functionally related, see, e.g., Datta
& Datta for an overview [1]. However, the standard clustering techniques do not take
post-transcriptional and post-translational lag times into account. More importantly, in
mining the vast amount of time series array data for putative control regulation relations,
lags between expression levels of genes may contain indicative clues as to which genes
code for proteins that act as regulators for others.

In this article, we present a novel datamining method for finding possible regulatory
relations between small sets of genes, based on time-course microarray data, see, e.g.,
[2]. In the sequel, we regard the normalized (relative) expression levels of each gene
as a time signal. We introduce preprocessing steps that transform such a time signal
into ”salient features”, points in time that may disclose possible lagged interactions
between genes. From this discrete representation, we train dynamic Bayesian networks
to predict regulatory events of specific target genes using a novel MCMC-approach.
Our new method is evaluated on microarray data obtained from the experiments by
Spellman et al. [2]. The results are promising. Most of the regulatory relations found
could be corroborated by literature.

2 Microarray Data

Our goal is to discover and interpret statistical relations between the relative expression
of genes. For that purpose, we need to choose a suitable representation scheme for time
series microarray data. Generally, each spot indicates the average relative (log) expres-
sion of mRNA corresponding to a particular gene Ri. The expression ratio of gene Ri

can be seen as a continuous stochastic variable, characterized by the probability den-
sity function p(Ri). Each variable Ri can either be a predictor or a target, relative to the
other variables entering the model. We use t to denote the time step at which variable Ri

is being measured and discretize the arraydata Ri(t), t ∈ {t0, . . . , tT } into the follow-
ing three categories: change, local minimum and local maximum. This differs from the
approach by others [3, 4], who make a distinction between up-regulated, medium regu-
lated and down-regulated gene expression. Our representation is different in the sense
that it combines successive expression ratios Ri(tv−1), Ri(tv) and R(tv+1) into fea-
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Fig. 1. In total six preprocessing steps are performed before our new datamining algorithm is
applied to the dataset: 1) the log ratios of each gene are computed, 2) linear interpolation results
in uniformly sampled log expression ratios, 3) the (optional) max-min filter removes transient
extrema, 4) convolution with the first-order derivative of the Gaussian function results in deriva-
tives of the expression ratios, 5) the local extrema are defined as time points at which the sign
of the first-order derivative changes, 6) the selected target gene is coded as a binary variable by
duplication, 7) MCMC-learning of local genetic networks.

tures that capture the local dynamics (local extrema) of the expression ratios. With our
representation, relations are discovered between the most likely time points at which a
gene (eventually its associated protein) is active (local maximum) and inactive (local
minimum). Our approach makes it possible to establish a regulatory relation between a
transcription factor with small absolute changes in expression ratio, and a target gene,
because the amplitude is disregarded.

The preprocessing steps consist of 1) computation of the log-ratio per gene, 2) linear
interpolation, 3) max-min filtering (optional) and 4) detection of local minima and local
maxima using the derivative operator from the linear scale space. In the steps 5) and 6),
the local extrema are identified and the number of observations doubled.

2.1 Interpolation

Computation of the derivatives over each gene entails the application of (linear) filters.
Filtering requires that the signal be uniformly sampled over time. We use a linear nearest
neighbor scheme to interpolate non-uniformly sampled time series because this scheme
can never introduce new local minima or maxima. Interpolation results in a uniformly
sampled time series t, t ∈ {1, . . . , T} of expression rations, Ri(t) for gene i.

2.2 Max-Min Filter

To cope with transient changes in the first order derivative as a result of noise, we
incorporate an extra (optional) preprocessing step consisting of the morphological max-
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min filter [5]. An advantage of the max-min filter is that non-transient extrema in the
original signal are left unaffected. The max-min filter is defined as

K(t) =
max

t1∈b(t)

(
y = min

t2∈b(t1)
(R(t2))

)
+ min

t1∈b(t)

(
y = max

t2∈b(t1)
(R(t2))

)

2
(1)

When the width of the window b(t) exceeds zero, small inflections become saddle
points, otherwise K(t) = R(t).

2.3 Regularized Differentiation

Transformation of the continuous expression ratios Ki(t) into the desired discrete rep-
resentation: change, local minimum and local maximum, requires the computation of
derivatives, ∂Ki(t)/∂t. We use operators from the linear scale space [6, 7] to transform
differentiation into a well-posed problem [8] by means of regularization. Regularized
derivatives of a discrete time series are obtained by convolution with the first-order
derivative of the Gaussian function

g′(t; µ, σ) =
−
√

2
2
√

πσ3
· (t − µ) · exp

(
− (t − µ)2

2σ2

)
(2)

Convolution with g′ results in

H(t) = g′(t; 0, σ) ∗ K(t) =
∫ ∞

−∞
g′(τ ; 0, σ) · K(t − τ) dτ (3)

When the sign of H(t) changes between two consecutive time steps, H(t− δ) < 0 but
H(t + δ) > 0, this indicates a local minimum whereas H(t− δ) > 0 but H(t + δ) < 0
indicates a local maximum. When there is no change in sign, the time step H(t) gets
the label change.

2.4 Data Representation and Modeling

Our goal is to identify possible co-regulatory and control-regulatory relations between
sets of genes. With C(Ri, Rj) we indicate co-regulation between the genes Ri and Rj ,
whereas T (Ri → Rj) indicates that gene Ri controls the regulation of gene Rj . An im-
portant difference between co-regulation and controlled regulation is that co-regulation
is a commutative relation, whereas controlled regulation is assumed not to be commu-
tative. Consequently, the inclusion of lags in the time series should, in theory, make it
possible to discern putative control regulations from co-regulations. The continuous val-
ued variable H(t) is discretized by the function f . This results in a discrete time series
per gene, xi,t = f(Hi(t−δ), Hi(t+δ)), with Xi,t = xi,t, xi,t ∈ {min, change, max}.

We propose to model possible gene interactions using dynamic Bayesian network
classifiers. In the remaining part of the paper, we use X to indicate the set of predictor
genes and C the target gene. Figure 2 indicates which types of relations may be found
by our approach. We use a lagged time series model in the following way. At each time
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t – 2 t – 1 t

Gene 1           Change               Local max               Change
Gene 2           Local min           Change                    Change
Gene 3           Change               Change                    Change
….

Predicted
gene               Change                Change                 Local max

Fig. 2. Significant regulatory events of the expression of a target gene are being predicted by
regulatory events pertaining to other genes earlier and at the same time as the target. Thereby,
both control regulation and co-regulation with predictor genes can be modeled.

step t, the outcome of one target gene Ct, ct, should be predicted by the outcomes of the
predictor genes xi,τ , τ ∈ {t − λ, .., t} with λ, λ ≥ 0, indicating the maximal lag that
can be accounted for. This representation results in the following matrix of n = r × λ
(potential) predictor variables

Xt =




x1,t−λ x1,t−λ+1 · · · x1,t

x2,t−λ · · · · · · x2,t

· · · · · · · · · · · ·
xr,t−λ · · · · · · xr,t




(4)

from which the outcome of Ct is being predicted. The data (Xt, Ct), t ∈ {1, . . . , T},
constitutes the basic training set. We use a datamining algorithm that performs concomi-
tant feature and model selection in order to estimate the most likely lagged classifier
model. Connections to features (possible regulator genes) that contribute to predicting
the outcome of Ct are likely to be included in the model whereas genes that do not
improve the predictive performance remain disconnected.

For most of the genes, a local extremum occurs much less frequently than a change.
Consequently, it is likely that many correlations appear between genes of which the
expression changes. To ensure that only local minima and local maxima of the target
gene are being predicted, we choose to reduce the number of possible outcomes of the
target variable to just two: local minimum and local maximum. To retain the three basic
outcomes, we double the number of observations resulting in a final training set D

– (xt, ct = max), becomes ds = (xt, ct = max) and ds+1 = (xt, ct = max)
– (xt, ct = min), becomes ds = (xt, ct = min) and ds+1 = (xt, ct = min)
– (x(t), ct = change), is doubled into an ambiguous prediction of ct, ds = (xt, ct =

min) and ds+1 = (xt, ct = max)

with s = 1, . . . , 2 T − 1. Note that we do not add any information to D that is not
included in the original data. Only the number of observations doubles, a fact that can
easily be accounted for if one wants to estimate, e.g., the variance of the model outcome.
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3 Dynamic Bayesian Network Classifiers

Before describing in detail how to build dynamic Bayesian classifiers, we briefly con-
sider previous work. Friedman [9] pioneered with his Bayesian network approach to
modelling gene interactions. A separate variable indicates the cell cycle phase, i.e., time.
Husmeier [3] used a dynamic Bayesian network to model the lagged relations between
genes using the likelihood of the graph as a scoring metric. Husmeier acknowledges
the problem imposed by the limited size of available microarray time series. As earlier
stated, we choose to predict the change in expression of individual genes by a classifier.

A probabilistic network classifier M = (G, θ) consists of a structural model specifi-
cation, the directed graph G, and the parameters, θ, with the (un)conditional probability
θi,j,π(i) = P (Di = dj | π(Di) = dπ(Di)). The notation π(Di) = dπ(Di) indicates the
values of the parents of node Di in the graph G (the parents constitute the nodes with
arcs pointing directly to node Di). Computation of the posterior probability distribution
P (C|X) is specified by the directed graph. It follows from the chain rule that the joint
probability P (d) = P (c, x) is computed from

P (d) =
k+1∏
i=1

P (Di = dj | π(Di) = dπ(Di)) (5)

A little manipulation of Bayes formula yields the posterior probability associated with
class label cj

P (cj |x) =
P (cj , x)∑
m P (cm, x)

(6)

3.1 Learning Probabilistic Network Classifiers

Probabilistic network classifiers [10] have to be learned from a dataset D. In the past,
complete graphical models have successfully been learned using the approach intro-
duced by Madigan & York [11]. However, their version of the MCMC-algorithm is
not appropriate for learning probabilistic network classifiers, because it samples com-
plete graphs drawn from the conditional distribution P (G | D). Instead, we introduce a
novel Markov Chain Monte Carlo technique based on the principles of Reversible Jump
MCMC [12] to sample the posterior distribution probabilistic network classifiers. We
make a simplification that leads to a less complex across-model sampling scheme than
RJMCMC. Consequently, we can omit the Jacobian determinant term.

Let the variables in the learning database D be separated into a set of predictor
variables X and a classification variable C, D = (C, X). Our goal is to sample models
from the following target distribution P (L(C) | D), with L(C) a score function (also
called loss function [13])

P (L(C) | X, G, θ∗, D) =
∏

d∈D

l(P (c | x, G, θ∗, d); v, γ) (7)

with l the modified step function
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l(y; v, γ) =




γ : y ≤ 1
2 − v

1
2 : |y − 1

2 | < v

1 − γ : y > 1
2 + v

(8)

for which it holds that l(C = c) ∈ (0, 1),
∑

c l(C = c) = 1. The modified step
function has two parameters, the span of indeterminacy v and the bounding probability
γ. The parameter v determines the range of posterior probabilities regarded as ties,
resulting in an intermediate score. The bounding probability 0.5 > γ > 0 determines
the gain or loss obtained by classifying a case correctly or wrongly, respectively. The
score L(C) can be considered a genuine probability, similar to the likelihood P (D | G)
applied by Madigan & York. The distribution P (L(C) | D) cannot be sampled directly,
hence we perform the following factorization yielding a hierarchical Bayesian model:

P (L(C) | D) =∑
G P (L(C) | X , G, D)

P (G | X)P (X | k, D)P (k | D)

(9)

with G the directed graph, X the observations corresponding to the subset of selected
predictor variables, and k the number of selected predictor variables. Computation of
P (L(C) | X, G, D) requires a closed form solution to

P (L(C) | X, G, D) =
∫
θ

P (L(C) | X, G, θ, D) P (θ | X, G, D) dθ (10)

in which P (L(C) | X , G, θ, D) is the probability of the score L(C), given the param-
eter vector θ, the data associated with the predictor variables X , the acyclic graph G
and the database D. As no closed form is presently available, we suggest to use instead
P (L(C) | X, G, θ∗, D) with θ∗ the maximum-likelihood estimate of the parameter
vector1. Note that the model G does not change as a function of θ. Since G does not
depend on θ, conditioning on θ∗, the most likely parameter vector, will not strongly
bias the estimate of P (L(C) | X, G, D). However, this approximation necessitates the
use of a regularization prior. The following derivation is based on work presented else-
where [14]. The variance of ln(L(C)) equals the sum of the variances of ln(l(xi); v, γ),
pertaining to the individual cases i

σ2
ln( P (L(C)) ) =

(
ln

(
1
2

+ γ

)
− ln

(
1
2
− γ

))2 ∑
i

(pi − p2
i ) (11)

The probability pi is in fact the probability per case that resampling the training set
leads to the same winner resulting in l(xi; v, γ) = 0.5 + γ. Conversely, 1 − pi is an
error rate for a correctly classified case i. Consequently, we subtract σ2

ln(L(C)) from
ln{P (L(C) | X , G, θ∗, D)}.

1 This motivates our choice of score function in the first place.



156 Michael Egmont-Petersen, Wim de Jonge, and Arno Siebes

The Markov Chain Monte Carlo algorithm should preferably not be biased towards
a certain number of features or model complexity. Hence, we propose to use a uniform
prior P (k | D) on the size of the feature set k. For each feature set size k, each feature
subset should be equally likely, so P (X | k, D) is also uniform. Finally, for a particular
feature set, each possible model utilizing this feature subset should have the same prior,
so P (G | X) is uniform. We define the one-step look ahead neighbourhood of the
graph G consisting of the directed acyclic graphs of classifiers that can be constructed
by adding one arc to G or deleting one arc from G. The neighborhood NBC(G) is
subdivided into four disjoint subsets

NBC(G) = {NBC(G + 1F ), NBC(G − 1F ), NBC(G + 1M ), NBC(G − 1M )} (12)

The subset NBC(G + 1F ) contains the graphical models in NBC(G) where the addi-
tion of an arc implies that G′ contains one feature variable more than G. The subset
NBC(G − 1F ) contains the models in NBC(G) where the deletion of an arc implies
that G′ contains one feature variable less than G. The subset NBC(G + 1M ) contains
the models in NBC(G) where the addition of an arc increases the complexity of G′, but
where G and G′ include the same feature variables. NBC(G−1M ) contains the models
in NBC(G) where the deletion of an arc decreases the complexity of G′, but where G
and G′ include the same feature variables. Define the appropriate proposal distribution
qC :

qC(G → G′) =




u < 1
4 q1(|NBC(G + 1F )|−1)

1
4 ≤ u < 1

2 q2(|NBC(G − 1F )|−1)
1
2 ≤ u < 3

4 q3(|NBC(G + 1M )|−1)
3
4 ≤ u q4(|NBC(G − 1M )|−1)

(13)

with u ∼ U(0, 1). The proposals q1, q2, q3 and q4 result in a classifier pertaining to each
of the four disjoint sub-neighborhoods, NBC(G + 1F ), NBC(G − 1F ), NBC(G + 1M )
or NBC(G − 1M ), respectively. The proposal distribution qC implements the uniform
priors, P (G | X), P (X | k, D) and P (k | D). So in each proposal, the MCMC-
algorithm with the same probability chooses to add a feature, delete a feature, increase
the model complexity or simplify the model (the two latter moves keep the same feature
subset). The resulting Metropolis-Hastings ratio becomes

P (L(C) | Xq, Gq, θ
∗
q , D) Pq( (Xq, kq) → (X , k) ) V

P (L(C) | X, G, θ∗, D) Pq( (X , k) → (Xq, kq) ) Vq
(14)

with q indicating the new proposal, the regularization terms

ln(Vq) = −α σ2
ln(P (L(C)|Xq··· )) and ln(V ) = −α σ2

ln(P (L(C)|X··· )).

The proposal probabilities, Pq( (Xq, kq) → (X , k) ) and Pq(X, k → Xq, kq) correct
for parts of the model space where one or more of the sub-neighborhoods are empty.



Discovery of Regulatory Connections in Microarray Data 157

4 Experiments

To validate the applicability of our method on a true biological system, we used the
yeast cell-cycle expression dataset from Spellman et al. [2]. The yeast cell cycle is a
highly regulated process, with a central role for a class of genes named cyclins. Cy-
clins are transiently expressed in different phases of the cell-cycle, and team up with a
cyclin-dependent kinase (CDK). Together, the cyclins and the kinases regulate the ex-
pression and/or activity of transcription factors, which in turn regulate the expression of
genes that are directly involved in the diverse processes that prepare a yeast cell for divi-
sion. We used an experiment where cells were initially synchronized, and subsequently
followed in time as they progressed through the cell cycle.

The cyclins CLB2 and CLN3 are functional partners of the essential CDK CDC28.
Clb2p/Cdc28p posttranscriptionally regulates transcription factors Mcm1p/Fkh2p
through Ndd1p. We followed the expression of CDC28, CLB2, MCM1, and several
target genes of MCM1/FKH2 to determine whether this genetic network could be iden-
tified using our method. Cln3p/Cdc28p are known to regulate the activity of the Swi5p
transcription factor; their expression and the expression of target genes of Swi5p were
analyzed. Ste12p, another transcription factor acting in concert with Mcm1p, was also
analyzed in concert with some of its target genes.

To investigate the influence of our signal processing steps, parameter settings of the
max-min filter and the scale-space transformation were varied, and co- and controlled
regulatory events were compared to actual regulatory interactions described in the liter-
ature [15]. Finally, our co-regulatory relations were compared with the results obtained
from hierarchical clustering (Euclidean distance measure). A summary of our results
per target gene is presented in Table 1.

We varied the settings of the max-min filter and the scale-space transformation. In
total 29 time points were sampled from the Spellman data. To obtain a data set with
a uniformly sampled time, nearest neighbor linear interpolation was applied to a few
time steps. This interpolation scheme was chosen because it can never introduce new
extrema in the time series. Subsequently, dynamic predictor variables were extracted
with lags ranging from 2, 1 and 0 time steps (with each time step corresponding to
10 minutes). As a complete time series with all three lags is required, only 27 time
points were available. After preprocessing (Fig. 1), in total 54 (doubled) data points
were available. The following genes were considered as targets: CLB1, BUD4, SWI4,
CDC6, AGA1, ASH1, CDC45, CDC47, CTS1, FUS1 and MFA2. As predictive fea-
ture variables, the following variables were included: MCM1, STE12, CDC28, CLB2,
CLN3 and SWI5. Corresponding to each target gene, the MCMC-algorithm was run
10.000 iterations. The most likely and second-most likely feature subsets occurring in
the Markov chain were identified, see Table 1. We could find some co-regulations and
controlled regulations with every setting applied. The max-min filter was important for
the end result; when not applied, many spurious correlations were found, likely due
to the relatively high noise in the signal corresponding to the lower expressed regula-
tory genes. The higher σ2 was set, the more significant our results were. With σ2 set
at 4, only one false positive interaction T (CLN3 → MFA2) was detected, yet some
co-regulatory events were missed, that were apparent when σ2 was set to 2. Since we
were primarily interested in controlled regulation, we used the max-min filter set at
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Table 1. Selected target genes listed in the most left column at different lag times are indicated
by their names. Results consistent with co-regulation (also close in hierarchical clustering) or
controlled regulation are indicated with a Y(es) in the ’valid’ and ’close’ columns, respectively.
Spurious correlation is indicated with a N(o). The question marks indicate possible controlled
regulations, where regulatory genes were co-regulated with their targets. The parentheses (. . .)
indicate observations pertaining to the second-most likely model found by MCMC.

Target gene Lag(0) Valid Close Lag(-1, -2) Valid

CLB1 CLB2 Y Y

BUD4 CLB2 Y Y

SWI4 CLB2 Y

CDC6 CLB2 Y

AGA1 CLB2 Y

ASH1 CLB2 (SWI5) Y (Y)

CDC45 CLB2 (MCM1) Y (Y)

CDC47 CDC28 N N

CTS1 SWI5 Y

FUS1 SWI5 (MCM1) N (?) N

MFA2 CLN3 (CLB2) N (Y)

w = 3, and chose σ2 to be set at 2 in the scale space transformation. The regularization
parameter α was set to 10.

5 Discussion

Our method relies solely on the timing of expression ratios of mRNAs, corresponding
to the genes under investigation. It is possible to imagine that regulators, when altered
in level, can change the level of their target genes at a given time in the near future. We
expect the time course of regulatory events to be limited by diffusion of the molecules
within the cell, and the rate of transcription of a target gene, and therefore we expect
controlled regulations to occur within the time frame of minutes. Since one time point
represents 7 minutes in the dataset under investigation, only the lag (0) co-regulation
and lag (−1), and lag (−2) controlled regulatory events were taken into account.

Microarray data are inherently noisy, and only describe the expression of mRNA
levels, ruling out the possibility to directly detect interactions due to cellular processes
occurring after translation (e.g., mRNA decay, protein modifications, protein degrada-
tion). Despite these obstacles, our combination of preprocessing, coupled to selection
of predictive features from a group of potential regulatory genes, allowed for robust
detection of interactions.

The parameter settings of the max-min filter and the scale-space transformation had
considerable influence on the genes detected in our method. Several factors can account
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for this. Firstly, transcription factors are expressed at a low level, resulting in a higher
variation in expression due to the inherent noise of microarray experiments. The max-
min filter and the scale-space transformation both smoothen these smaller variations,
resulting in a trade-off between noise suppression and sensitivity. Secondly, when a
higher value for σ2 is used in the scale-space transformation, a bias is introduced which
can alter the timing of regulatory events. Finally, controlled regulations occurring within
a time interval of seven minutes (the sampling time in the experiment) will be detected
as co-regulations. Within the limits of the experimental set-up, we cannot catch these
regulatory events, a shortcoming that could be circumvented by sampling at shorter
time intervals.

We identified ten controlled regulatory events in the set of genes we analyzed, of
which only one correlation turned out to be spurious. Two additional co-regulated genes
(C(CDC28, CDC47), C(MCM1, FUS1)) may represent controlled regulations charac-
terized by shorter lags than the sampling time. It is interesting to note that the expression
of these genes was distant in cluster analysis, a consequence of the expression ratios be-
ing inversed in sign, yet co-regulated. An example of the latter was C(MCM1, FUS1),
the high frequency and regular spacing of extrema lead us to conclude that the de-
tected correlation was due to co-linearity, because a controlled stimulatory interaction
is expected to show a lagged co-regulation with extrema being of the same sign. In the
future we will include prior knowledge, such as whether a regulatory gene stimulates
or represses transcription of a target gene, to circumvent this problem.

In summary, we present a proof of concept for a new method to extract regulatory
interactions from microarray time series data. Despite the noisy character of the data
and other experimental limitations, ten out of thirteen detected control-regulatory events
corresponded to published experimental data, whereas one of the three false positives
can be corrected using prior knowledge. Future approaches, incorporating knowledge
about biological systems, will be expected to yield an even higher predictive accuracy.

6 Conclusion

In this article, we introduced a completely new approach to discovering putative regu-
lative relations between genes studied in time series microarray experiments. The pre-
processing steps make it possible to capture dynamic relations between sets of genes.
Using Markov Chain Monte Carlo sampling and a new hierarchical Bayesian model,
we discover control regulations and co-regulations between sets of genes. The method
works well as it results in small compact graphs that reflect experimentally verified reg-
ulatory relations between genes. The predictive variables included in the (second) most
likely graphs often exert control upon the target gene. Among 15 regulatory relations
found, only 2 were spurious. In the future, we will evaluate our approach further on
simulation data to get more insight into the parameter settings and on other real data
sets to validate the method’s appropriateness.
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